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An adequate description of positron annihilation rates in metals is obtained by extension of the high-
density limit, for annihilation in an electron gas, to realistic densities. A short-range electron-positron force 
is obtained in the high-density limit and is used to treat accurately the two-body correlations between 
the positron and metallic valence electrons. This description proves to be satisfactory for metals with low 
valence electron densities as well. The variation of annihilation rates with valence electron density, and also 
the absolute rates, agree quite well with those obtained experimentally by Bell and J0rgensen. 

I. INTRODUCTION 

IN an earlier paper1 the author discussed the annihila
tion of positrons in metals using a screened potential 

based on the Bohm-Pines model for an electron gas.2 

He found a variation in annihilation rates with electron 
density not indicated by the then current experiments. 
Subsequently, Bell and J^rgensen3 remeasured some of 
the relevant rates and found a variation more or less 
parallel to that predicted in K(I) . However, the 
annihilation rates of Bell and Jp'rgensen were consider
ably less than those obtained by this author. 

The present work redoes the calculations of K(I) 
using a second quantized description of the electron gas, 
and an approximation scheme guided by the high-
density limit for the gas. The principal weakness of the 
Bohm-Pines approach relevant to our problem is the 
arbitrariness of the choice of a screening length in the 
short-range electron-positron force. In the high-density 
limit one is led naturally to a screened Coulomb force. 
In this limit one is able to account simply for the polari
zation of the background medium by an interacting 
electron-positron pair and to compute the effects of this 
polarization on annihilation rates. Unfortunately when 
one approximates real metals by electron gases the 
electron densities are not in the high-density region. If 
then we wish to obtain meaningful quantitative results 
we must look for some way of extending the high-
density calculations to regions of lower density. 

In K(I) and in the present work we have tried to 
obtain a description valid for realistic densities by ac
curately accounting for the two-body correlations be
tween the positron and an annihilating electron. The 
attractive nature of the electron-positron force suggests 
that these correlations are of greatest importance. They 
produce a coherent contribution to the electron density 
in the immediate neighborhood of the positron. No 
higher order correlations are considered with the 

* This work was performed while the author was on leave of ab
sence from the Mathematics Department, McGill University, 
Montreal, Canada. The author would like to express his gratitude 
to the Ford Foundation for support during his stay in Copenhagen 
and to the National Research Council of Canada for aid in 
travelling. 

1 S. Kahana, Phvs. Rev. 117, 123 (1960). Referred to in future 
asK(I ) . 

2 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
s R. E. Bell and M. H. Jo'rgensen, Can. J. Phys. 38, 652 (1960). 

exception of those responsible for the screening of the 
attractive electron-positron force. 

In what follows we have first outlined our approach 
in the high-density limit and then have applied this 
approach to electron gases which can be used to describe 
real metals. 

II. FORMAL THEORY OF THE ANNIHILATION AND 
THE EFFECTIVE ELECTRON-POSITRON FORCE 

A calculation of the annihilation rate reduces essen
tially to estimating the electron density at the positron 
averaged over all positron positions.4 This quantity is 

• / 

« = / ((f(x)ty<.x))(4>(z)f<l>(x)))<Px. (1) 

We are using a second quantized notation in which <j>(x) 
is the positron Heisenberg field at time t and position x\ 
while yp(%) is the corresponding electron field.5 The 
expectation value in (1) is taken in the fully interacting 
ground state for the system of electrons and positron. I t 
is possible to relate (1) to the zero-temperature electron-
positron correlation or Green's function. The latter is 
defined as 

G.P(xy; x'y') = i>(\ TM*)4>(yW<Sm*))\ >> (2) 

where T is the Wick time-ordering operator.6 We see 
then 

w = (-f)2 / dzx lim Gev{xt,xt\ %?,%?). (3) 

If the positron were uncorrelated with its neighboring 
electrons we would have as an approximation to (2) 

Gepixyix'y^^Geix^Gptyy), (4a) 
4 R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956). 
5 We are suppressing the spin labels on the field operators. One 

must of course remember that the annihilation into two quanta 
can only take place from the singlet spin state and we incorporate 
this into later calculations of the annihilation rates. Once the 
density is calculated we can calculate the annihilation rate R by 
comparison with the known density and rate in positronium. The 
result is 

K = "f xvpositronium (W/Wpoaitronium) • 

The factor \ arises from a spin averaging which is clearly required 
in a metal. 

6 G. Wick, Phys. Rev. 80, 268 (1950). 
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where 

and 
Ge{x,xf) = i{T{KxW &))) (4b) 

Gp(x,xf) = i(T(4>(x)<t>Hxf))). (4c) 

It is to be noted that the single-particle Green's func
tions in (4) are expectation values of Heisenberg opera
tors in the fully interacting ground state. Nevertheless 
translational invariance assures us that the density, w, 
obtained by use of (4) as a first approximation to (2) 
does not differ from that for a positron inserted into a 
sea of electrons with which it does not interact. Thus 
inclusion of only self-energy effects within the electron 
gas cannot alter the annihilation rate from its free or 
Sommerfeld value. In the following analysis we ignore 
all self-energy effects, including the interaction of the 
electron and positron with the metallic lattice, even 
though these are ultimately of great interest. 

The equations of motion for the fully interacting 
system couple the particular Green's function (2) to 
functions involving both fewer and greater numbers of 
particle coordinates.7 It will be possible, however, to 
restrict our attention to a single integral equation for 
Gep. Formally we may write 

Gep(xy,x'yf) 

= GJ>(xx')GI?(yy')+(-i) Id&rid?dv' 

XG*(x&Gp*(yf,)I(fr9 MG.&W,*'?)- (5) 

Ga° and Gp° are Green's functions for freely propagating 
electron and positron. I is an interaction operator which 
is formally defined by (5) but which may be computed 
from a perturbation expansion for Gep. 

If a definite choice is made for the interaction operator 
then (5) may provide a means for producing quantita
tive results. The simplest choice that suggests itself is 
to set 

i.e., 

(xy\I\xfy') = vep(x~y)d*(x-x')5*(y-yf), (6a) 
where 

VeP(x-y)=(e*/\x-y\)6(t). (6b) 

The time 8 function in (6b) reminds us of the instan
taneous or static nature of the Coulomb force. On 
physical grounds it is clear that (6a) is inadequate. The 
positron in addition to interacting directly with an 
electron will appreciably polarize the surrounding gas. 
The resulting polarization charge will then screen and 
weaken the direct interaction between electron and 
positron. 

For a very dense electron gas one would expect to 
be able to expand Gep in powers of the electron-positron 

7 See for example: P. Martin and J. Schwinger, Phys. Rev. 115, 
1342 (1959), or A. Klein and R. E. Prange, Phys. Rev. 112, 1008 
(1958). 
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FIG. 1. (a) Diagrammatic representation of the effective 
electron-positron interaction u(x). (b) Graphical representation of 
an integral equation for u(x). 

or electron-electron Coulomb potentials, and retain 
only the lowest orders. It is, however, necessary to 
ensure that the polarization is adequately, treated. 
Following the suggestions of previous authors8-10 we can 
partially account for the electron gas polarizability by 
summing a specific set of terms in perturbation theory; 
the terms in which the positron before interacting with 
a given electron, excites a number of particle-hole pairs 
in the background gas. The series arising in this fashion 
is represented graphically in Fig. 1. 

The final result is to replace vep(x) by an effective 
interaction u(x) indicated schematically by a wavy line 
in Fig. 1 (a). u{x) satisfies the following integral equation 
[Fig. 1(b)], 

—i) I dzdz' u(x~y) = vep(x—y)+( 

XVee(x-z)G°(z,z')G>(z,z')u(z'-y), (7) 

where vep— — vep is the electron-electron Coulomb 
potential. Because of the finite inertia of the background 
gas the effective interaction is clearly not static. 

Equation (7) is readily solved by introducing the 
Fourier representations,9-10 

«(*)=( l /2 \TV)T, J, dw eikx-<u'uk(o}), (8a) 

W 
»..(*)= ( 1 / 2 T V ) 5 : f do> e^-^'v,, vk= , (8b) 

* J & 

G.° (*,<)) =(l/2xV) E Ida 
[_k>kF J — 0>+&2+tt} 

/

«ik-i— idit —i 

—o)-{-k2—ir}J 

where V is the quantization volume and &F is the Fermi 

8 M . Gell-Man and K. Brueckner, Phys. Rev. 106, 369 (1958). 
9 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957). 
10 D. F. Dubois, Ann. Phys. (N. Y.) 1, 174 (1959). 
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Z-PLANE 

0 k + 2k a^-lv 

FIG. 2. The z plane indicating the singularities in Uk(z), 
the Fourier transform of u(x). 

momentum of the electron gas. We obtain 

«*(«) = [l/€fc(o>)>fc, (9a) 

€*(«) = l+2t»*0fc(«), (9b) 

&(«) = E f 
27rFi a J 

dEGq+k(a+e)Gq(e). (9c) 

It is natural to regard €k(u) as a longitudinal dielectric 
constant for the electron gas. We note this quantity is 
frequency dependent, reflecting the time dependence of 
the effective or screened interaction. 

Inspection of (9b) and (9c) indicates that c&(Z) 
regarded as a function of the complex variable Z is 
analytic in the cut plane drawn in Fig. 2. The cuts 
extend from Z= — (k2+2k) to Z==0 just above the real 
axis and from Z=0 to Z—k2+2k just below the real 
axis. These cuts arise from the continuum of possible 
energies for real electron particle-hole pairs in the non-
interacting Fermi sea. The dielectric constant has in 
addition, zeros at w=±0*, for values of the momentum 
transfer k less than some maximum value hc. It is well 
known9,10 that the corresponding singularities in Uk(o>) 
are associated with a collective mode of excitation of the 
electron gas, the plasmon. For k>kc the plasmon poles 
merge with the cuts and the plasmon loses its identity 
as a separate excitation. 

Thus the electron-positron interaction is modified by 
the possible excitation of real electron hole-particle 
pairs or by the "exchange" of a plasmon between 
electron and positron. The pair modification produces a 
short-range or screened force while the plasmon ex
change represents residual long-range effects. 

In K(I) we identified the plasmon cutoff kc with a 
lower limit for the momentum transfer between inter
acting electron-positron pairs. In effect we took as a 
screened interaction 

= 0, k<kc 
(10) 

This arbitrary assignation of a screening length ~ l/kc is 
what we are at present questioning. 

Having specified our choice of the interaction / in 
Eq. (5), i.e., 

I(xy;x'y') = u(x-y)di(x-x')8A(y~-y/)) 

we are left with the task of solving the resulting integral 
equation. This is discussed in the ensuing sections. 

n i . THE HIGH-DENSITY LIMIT 

This limit is obtained by retaining in (5) only the 
first iterate in the potential u(x). The electron-positron 
Green's function then becomes 

Gep=Ge°Gp
0+Ge

0Gp%Ge°Gp0. (11) 

Inserting (11) into (3) yields the high-density annihila
tion rate. A modification of the Sommerfeld rate is 
obtained from the first-order term 

wd)= I (PxGe(xy)Gp(xz)u(y—z) 

XGe(yx)Gp(zx)(Pz<Py. (12) 

Fourier transformation yields 

*(« 
2i2 1 r 

= £ dadedE 
(2w)W2wV rs.r's' J r +s =r' +s' 

XGr*(6+a)G8»(E-a)ur-r>(a>)Gr>
e(e)Gs>*(E). (13) 

We must include a specification of the transform of the 
positron Green's function. We set 

GhP(a))=l/(~a>+k2-iri)t k2>0 
= l/(-o>+«j), A2=0, 

(15) 

thus imposing the boundary condition that a single 
positron of zero momentum is originally present in the 
electron gas.11 

The integration over the variable E may be performed 
giving rise to two identical contributions for $=0, s'^O 
and 5 7^0. $'=0. We obtain 

2i3 

.(!) = 
(2TT) 3 F 2 

X) I do) uT-r> (a))2TriGr>-rp(—o>) 
s,r'8f J 

xry<fcGr«(«+«)G^"(«)l. (16) 

Reference to (9) allows us to reduce the above to 

46 „(»=-
2TTV 

£ /*«fe»«,(«)Q,(a)G_,+(-w), 
«*o J 

where 
(17) 

G-«+(- W )= l / ( -a>+^-f*) . 

The final integration over « may be completed in the 
lower half-plane, contributions arising along the positive 
cut in Fig. 2 and at the associated plasmon pole. The 

11 We are using units in which 2m = -h— 1. 
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result may be written 

H —tl continuum i ^ plasmon 

= (2/P)E„p v^t(p+qy-p>+q*yi 

+ (2/V)Zk<*cRklk>+Slk]-i (18) 
with 

v™-={| l+2vqQgl(p+qy-q^\2}-% 

and Rk the residue of (?*(«)[/*(«) at &&. There is a clear 
separation into a potential contribution through the 
high-density screened interaction vq

hA'12 and a plasmon-
exchange contribution. 

IV. NUMERICAL RESULTS IN THE 
HIGH-DENSITY LIMIT 

The continuum contribution in (18) can be inter
preted as arising from electrons annihilating with vary
ing momentum p within the Fermi sea. The case of zero-
electron momentum was considered and the q integra
tion in (18) was performed on the electronic digital 
computer SMIL at the University of Lund, Lund, 
Sweden. Since rough calculations indicated a slow varia
tion of the integrand in (18) with p we will, at this stage, 
simply ignore this dependence. 

It is convenient to quote the resulting densities nil) 

continuum in units of the free-Sommerfeld density no 
for the material. The values obtained for electron gas 
densities encompassing the metals Na and Al are listed 
in Table I. Also listed are similar densities calculated in 
perturbation theory from the screened potential of 
K(I). Apparently the Bohm-Pines model predicts 
overly large annihilation rates. It then seems justified 
to redo the calculation of K(I) using the screened poten
tial obtained in the high-density limit. 

We have also estimated the plasmon contribution to 
the density enhancement. This has been done by assum
ing the coupling of the electron-positron pair through 
plasmons is independent of momentum, i.e., 

JR3«JRO=OO/4 and also 03«0o, 

where Oo is the classical plasmon frequency. The 
numerical results are displayed in Table II. The in
fluence of the plasmon on annihilation rates will clearly 
be small. 

Taking together the continuum and plasmon contri
butions we have listed in Table II the annihilation rates 

TABLE I. Density corrections «(1)
Continuum in units of wo due to 

the short-range forces uhd-, wK(I), u* in first order. 

r8
a 

2 
3 
4 

High-density 
limit 

1.080 
1.492 
1.862 

K(I) 
(first order) 

1.329 
1.993 
2.658 

Static limit 
(first order) 

1.066 
1.496 
1.891 

* r, is the familiar density parameter giving the radius of a sphere, in 
units of the Bohr radius, containing on the average one electron. 

12 It is easily demonstrated that vq
hA- is of short range since 

vq
hA- is convergent in the limit q —> 0. 

TABLE II. Plasmon contribution to the electron density, in units 
of wo, near the positron and comparison between the mean lifetimes 
to be expected in the high-density limit and that due to Bell and 
Jjzfrgensen. 

ra 

2 
3 
4 

Plasmon 
contribution 

to density 

0.158 
0.289 
0.354 

Annihilation 
rates in 

high-density 
limit 

(10-* sec"1) 

3.319 
1.199 
0.594 

Experimental 
annihilation 

rates 
(10-* sec"1) 

5.35 
3.82 
3.33 

to be expected in the high-density limit. These rates can 
be compared with those due to Bell and J^rgensen.3 

Although Al is not badly represented by the high-
density limit, metals with less dense electron gases are 
far from adequately described. 

V. EXTENSION TO LOWER DENSITIES 

We will now lift the restrictions of the previous 
paragraphs and attempt to solve Eq. (2) to all orders 
in the effective interaction u(x). It is immediately 
plausible and readily demonstrable13 that Eq. (2) could 
be reduced to a Schrodinger-like equation if the 
potential u(x) were static. In this case it is possible to 
obtain 

»=(1/I0£p<*,|¥,(x,x)|*, (19a) 

where ^p(x,x) can be interpreted as the wave function 
for a positron together with an electron of momentum p 
within the Fermi sea. If we introduce the Fourier 
representation 

^ p ( V P ) = I n c*<«.-'+**->¥p(rJs), (19b) 

then the momentum wave function satisfies 

^p(r,s) = 6rp58o 

Qrs+ 1 
£ ^r8pa8tatic*p(i>,cr), (20) 

(r2+s2)-p2 V P* 

where Qrs
+—0 if either r<kF or 5=0, i.e., Qr8+ accounts 

for the exclusion principle in intermediate states. 
Equations (19a) and (20) are equivalent to (2) and (3) 
when the electron and positron interact through an 
instantaneous interaction. 

If we wish to make use of Eq. (20) we must somehow 
obtain a static equivalent to u(x). To check the effect 
of the frequency dependence of Uk(oo) we chose the 
simplest equivalent 

uk
s=uk(Q), (21) 

and recalculated the continuum density correction na) 

for a zero-momentum electron. The results are contained 

13 w e w in n o t include a proof of this statement here as it is 
rather tedious. In any case the establishment of Eqs. (19a) and 
(20) resembles closely the development of the Bethe-Goldstone 
equation. See for example, A Klein and R. E. Prange, Phys. Rev. 
112, 1008 (1958). 
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in Table I from which it is evident that the first-order 
density corrections arising from uk(u) and uk(0) are 
indistinguishable. I t is reasonable then to use (21) as 
specifying our choice of a static potential. 

By eliminating the frequency dependence of Uk(o>) 
we are, of course, not ignoring the recoil of either the 
positron or the electron with which it is interacting. I t 
would appear, however, that our results are insensitive 
to the inertia of the background gas producing the 
screening. The equivalence of Uk(0) and Uk(u) cannot 
be expected to be as exact for the interaction of the 
positron with an electron at the surface of the Fermi sea. 
Nevertheless we have used the same static potential 
throughout the Fermi sea. 

VI. NUMERICAL SOLUTION OF THE ELECTRON-
POSITRON SCHRODINGER EQUATION 

In the limit of infinite volume (20) becomes 

Qr 1 
¥p(r) = 8 ( r - p ) -

r 2 + ( p ^ r ) 2 _ p 2 ( 2 7 r ) 3 

X hPpu'(t-9)*p(f>). (22) 

In obtaining (22) we have explicitly taken into account 
momentum conservation and suppressed the positron 
momentum label. I t is convenient to concentrate on the 
departure of the wave function ^p from a plane wave. 
We write 

^ p ( r ) = 5( r -p)+(3 r +X p ( r ) (23) 

and obtain 

Xp(r) = - « ' ( r - k > 
1 

of j>. The reduced integral equation reads 

u (r) 1 47r 

r2+(p-r)2-p2 

1 1 

r2+(p-r)2-p2(27r)3 

xf d*pu*(t-9)Xp(9). (24) 
J P>kF 

The latter equation must, in general, be solved for 
electron momenta p<kp- The exclusion principle tends 
to smooth out the dependence of annihilation rate on 
electron momentum, inhibiting the interaction of the 
positron with electrons deep within the Fermi sea and 
enhancing that with electrons at the surface. We have 
then tried to treat accurately the case p—0 and estimate 
the finite momentum corrections as a perturbation. 

For an electron at the center of the sea (24) becomes 

Xo(r) 
u{t) 1 1 r 

= T~T— ^ s ( r - p ) x o ( 9 ) . (25) 
2r2 (2 i r ) 3 2W p > f c F 

Xo(0= 
2r2 2r2 (2TT)3 

p2dpu0(r,p)xi)(p) (26) 

with 

A spherically symmetric solution of (25) may be ob
tained by assuming xo(o) is independent of the angles 

uo(ryp) = — / dQpu(t-p). 

A discussion of the numerical solution of (26), performed 
on SMIL, is contained in the Appendix. 

An electron of finite momentum presents some 
difficulties since (25) cannot then be separated into 
partial waves. There is still axial symmetry in the 
problem and one can write 

Xp(r) = Lww i> i (cos#)xp z ( r ) , (27) 

where 0 is the angle between p and r. 
In addition, reflection symmetry in the plane 0=7r/2 

implies that insertion of (27) into (25) will not result 
in a coupling of even with odd /. We have made the 
simplest approximation 

Xp(r)«Xp°«-

An angular averaging of (25) then leads to 

1 f ( - t t ( r - p ) \ 

XP°(0 = — M M 

4xi W(p- r ) 2 -pV 

(28) 

1 

4* 
dQp-

X-

r2+(p-r)2-p2 

— / (?dp Mo(r,p)xp°(p)- (29) 

:TT)3 J 
( 2 T > 

The latter equation is very similar in form to (26) and 
the numerical treatment is identical. Because of the 
assumed smooth variation of annihilation rate with 
electron momentum we have treated (29) only for 
P=?kF, f&F. 

The calculations discussed were performed for three 
values of the electron density specified by r*=2, 3, 4. 
The extreme ends of this density range correspond 
roughly to Al and Na. We have quoted for each electron 
density and momentum an enhancement factor: 

€(?) = I ^p(x ,x) I 2+€plasmon, 7 = p/kF, (30) 

which is a measure of the increased electron density at 

TABLE III . Momentum dependence of enhancement factors 
€(7) for varying electron gas densities. 

U 7 = 0 

2 3.480 
3 6.172 
4 11.225 

7 = i 

3.655 
6.555 

12.124 

7 = 1 

3.941 
7.204 

13.708 
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TABLE IV. Annihilation rate for positrons in metals of different 
densities obtained by use of the momentum-dependent enhance
ment e(y) = a-\-by2~\-Cyi. 

Annihilation 
rate 

(10-9 sec"1) 

3.480 
6.172 

11.225 

0.600 
1.292 
2.940 

0.387 
0.967 
2.617 

5.930 
3.239 
2.609 

the positron. These enhancement factors are listed in 
Table III. 

A final annihilation rate was obtained by performing 
an averaging over the Fermi sea assuming a momentum 
dependence of the form 

e(y) = a+by2-\-cyA, (31) 

The constants a, b, c and the annihilation rate deter
mined for each electron gas density are listed in Table 
IV. We may also use the information in this latter table 
to obtain the angular correlation to be expected between 
the two quanta emitted in the annihilation of an 
electron-positron pair. 

Assuming the positron is at rest we can calculate the 
number of 7-ray pairs possessing a total momentum pz, 
in some fixed direction, by integrating (31) over an 
appropriate plane intersection of the Fermi sea. We 
obtain the distribution function 

P (7 z) = constant / ydy e (7) (32) 

provided we assume an isotropic density for the elec
trons in the sea. If €(7) is roughly constant over the sea 
(32) will give the familiar inverted parabola distribution 
observed for many metals.14 

OUR THEORY 

-FREE GAS 

FERMI MOMENTUM 

- — STEWART 

wO 0.2 0.4 0.6 0.8 10 1.2 1.4 16 
MOMENTUM (/) IN UNITS OF THE FERMI MOMENTUM 

FIG. 3. Variation of the enhancement factor 76(7) across the 
Fermi sea, for y = p/kF=Q to 7 = 1. Our theory is compared to the 
free electron gas. The form of Stewart's experimental results near 
the Fermi surface is indicated. 

14 G. Lang, S. DeBenedetti, and R. Smoluchowski, Phys. Rev-
99, 596 (1955). A. T. Stewart, Can. J. Phys. 35, 168 (1957); 
Phys. Rev. 123, 1587 (1961). 

As an example we have considered the case of Na 
which has been treated experimentally most recently by 
Stewart,15 who is able to differentiate his data numeri
cally and obtains a plot of 76(7). In Fig. 3 we have 
plotted this quantity for a free gas and for our theory. 
I t is difficult to say just what is the best curve through 
Stewart's points. One may say though that his general 
results are not inconsistent with ours except perhaps 
near 7 = 1 , the surface of the Fermi sea. 

Stewart's work certainly contains events correspond
ing to a total momentum for the annihilating pair 
greater than the Fermi momentum. The possibility of 
annihilation involving electrons of momenta p>kF was 
artificially eliminated in our work. Such momentum 
states could be populated by interaction of electrons 
with the lattice or by electron-electron interactions 
within the gas. High-momentum components may be 
present in the positron wave function due to its depar
ture from a plane wave near the ion centers (excluded 
volume effect).16 Finally annihilation with core electrons 
would add broad tails to the free gas distribution (32). 
The experimental picture for trivalent Al is even more 
interesting in that it shows greater departure from the 
free gas near the Fermi surface. 

VII. DISCUSSION AND CONCLUSIONS 

A surprisingly accurate description of the total 
annihilation rate in many metals can be obtained by 
iterating the screened electron-positron potential de
duced in the high-density limit. This can be seen in 
Fig. 4 where the experimental annihilation rates due to 
Bell and Jo'rgensen2 are compared with those obtained 
from our theory. Both the absolute rate and the varia
tion with electron density are adequately described. 

-OUR THEORY 

FIG. 4. Variation 
of annihilation rate 
with valence electron 
density. Our theory 
is compared to the 
experimental work of 
Bell and J^rgensen. 

BELL AND 
J0R6ENSEN 

15 A. T. Stewart, Phys. Rev. 123, 1587 (1961). 
16 S. DeBenedetti, C. E. Cowan, W. R. Konneker, and H. 

Primakoff, Phys. Rev. 77, 205 (1950). 
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It is perhaps most surprising that the less dense 
metals are so well accounted for. This result can be 
made more plausible by examining the extreme low 
density limit. One would expect the positron to become 
more or less correlated with a single electron in a quasi-
positronium atom. There would still be, however, 
sufficient exchange and interaction for the complete 
mixing of triplet and singlet spin states. The lifetime in 
the low-density limit should then be ~4X( i .25X10- 1 0 

sec) = 5X10~10 sec. But we have included just those 
interactions which would lead eventually to the bound 
state. Hence our calculations have a good chance of 
predicting the lifetimes of the lower density gases. 

One might say that the positron is a poor probe of 
the electron gas because it appreciably distorts the 
initial metal configuration. One can perhaps assume our 
calculations describe this distortion adequately and now 
try to include more details of a real metal. I t would seem 
most hopeful to concentrate on the region near the 
surface of the momentum distribution where effects of 
the lattice and electron-electron interactions should be 
most noticeable. Very recently, Stewart17 has measured 
the angular distribution of annihilation quanta for Be 
along three distinct crystal directions. He has found 
three distinct distributions, thus vividly demonstrating 
the anisotropy of the electron momentum distribution. 

Finally we would like to point out the existence of a 
long lifetime in the metallic decay schemes. Bell and 
Jjzfrgensen3 have observed in the alkalis a weak decay 
mode of lifetime approximately twice that of the main 
component. I t is difficult to see how such a mode could 
arise from annihilation in the electron gas. If real, this 
long-lived component may arise from an electron-
positron state spatially localized in the sample surface 
or perhaps near a metallic ion. We have made no 
attempt to account for this state. 
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APPENDIX 

We are attempting to solve the equation 

1 u(r) 
Xo0)=-

with 

(2TT)3 2 r 

1 4TT 

2r2 ( 2 i r ) 3 ^ / p2dpuQ
8(r,p)xo(p) (Al) 

uQ*(r,p)~--— \<Klpu
s{\t-

ATT J 
91). (A2) 

I t is convenient from the outset to state momenta in 
units of &F. This may be achieved by multiplying (Al) 
throughout by &F3. A convenient parameter to use in 
this analysis in place of rs is 

T— 2/raokF~0.33rs. 

In these units the static interaction is 

(A3) 

X-

r(2»») 

k2 

{l+(r/k%k+(l~lk)\n\(k+2)/(k-2)\2} 

The angular average in (A2) then appears as 

| H - p | 

Uo(r,p) 
1 /-IH-PI 

U\r-p\ 
dk ku(k). 

(A4) 

(A5) 

17 A. T. Stewart (private communication). 

The general procedure followed was to select a grid 
of points {r0} along the r axis in (Al) and to evaluate 
(AS) for r, p assuming values in this grid. Then a 
numerical integration formula (in this case three point 
Gaussian integration) was used to convert (Al) into a 
set of linear equations in the unknowns xo (*%•)• The 
latter equations were subsequently solved by Crout 
elimination. 

The grid selected consisted of thirty points extending 
from r = 1 to r= 40. The grid was taken finer for smaller 
r to capitalize on the expected asymptotic behavior of 
the solution, i.e., 

Xo(f) • 1/f4. (A6) 
r-*oo 

The greatest difficulties were encountered in the compu
tation of the kernel uo(r,p). The potential (A4) clearly 
has a singularity in slope at &=2, a singularity of no 
particular physical significance. We used expansions of 
u*(k) in powers of (k/2) or (2/k) valid for k<2 and 
k>2, respectively. The region immediately near k=2 
was ignored, note being taken of a cancellation occurring 
in this region. The integral/*i40 r2dr xo(r) was calculated 
from the solution obtained. The integral from r = 4 0 to 
r = oo was estimated from the asymptotic behavior (A6) 
which was demonstrated in the course of calculation. 

For initial electron momenta differing from zero the 
numerical procedure was essentially identical. 


